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ABSTRACT

Numerous services are available today to develop an optimised asset man-
agement solution to enhance asset operations by improving the system
availability, decreasing down-time and operation and maintenance costs.
Three cases of engineering problems are explored in this paper, with data-
driven machine learning solutions proposed for these problems. The first
case refers to the labour-intensive nature of criticality analysis which are
used in asset management to prioritise assets. A machine learning solution
is proposed by the development of a trained criticality analysis model, with
a classification error of 12.35%, which could help in a better prediction of
the end result by automating the process i.e. training the model. The
second case looks at an application of machine learning on asset health
prediction by analysing failure patterns and parameters for a machine. The
model was evaluated with an error loss of 0.0024. The third case looks at
an integration of the priorities related to asset maintenance and manage-
ment through the development of a text classification machine learning
service selector (landscape) tool and explores improvising the end-user
selection of the services based on their challenges and perceived pain-
points related to asset management. The model was evaluated with an
accuracy of 84%.
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1. Introduction

According to ISO 55000 (International Standard, 2014), an asset is defined as
‘an item, thing or entity that has potential or actual value to an organization’
and asset management is defined as a ‘coordinated activity of an organization
to realize value from assets'. The asset management and maintenance activities
receive significant importance due to the high potential consequences
involved in terms of cost, risk and safety of personnel, environment, and repu-
tation. Significant time and effort are invested in improving asset operations
by optimising the reliability and availability, reducing the operation and main-
tenance costs and by adopting digitalisation to improve decision-making. The
Institute of Asset Management (IAM)'s conceptual model on asset manage-
ment states there are six subject groups, namely strategy and planning, asset
management decision-making, life cycle delivery, asset information, organisa-
tion and people and risk and review (The Institute to Asset Management,
2015). The assets are classified into physical, financial, human, information and
intangible assets (Hastings, 2021). Examples of physical assets include equip-
ment, systems, components and plants in the process, mining, and chemical
industries and these remain the focus of this paper within the IAM’s subject
groups of asset management. Asset maintenance management, as a research
topic is gaining popularity with techniques such as Reliability-Centered
Maintenance; Reliability, Availability and Maintainability (RAM) studies; and
optimisation techniques used to optimise the maintenance costs and sched-
ules. These techniques are also relevant to estimate remaining useful life of
critical components (Prakash & Kaushik, 2020; Rahdar et al., 2020) by consider-
ing stochastic processes and degradation models using sensor data and updat-
ing them with posterior information in a Bayesian analysis framework.
Machine learning is widely used in asset maintenance and management
owing to the Fourth Industrial Revolution and availability of big data that are
interconnected. It is a very efficient tool in processing huge amounts of data
and identifying patterns and classifying them to understand the asset better
and to facilitate proper management of assets. The dataset is used as an input
to the computer as a prior experience and the computer is trained to learn
the patterns of the dataset to give a ‘trained model'. This will aid in predicting
the likely pattern of a new dataset when presented to the trained model. This
can uncover the hidden patterns of the new dataset which would improve
the decision making and optimise the asset operations and availability.
Various applications of the machine learning in asset management include
the development of digital twin and predictive analytics for fault diagnostics
and anomaly detection to monitor the health of the equipment (Xu & Saleh,
2021). Methods such as random forest decision trees, artificial neural net-
works, support vector machines are proposed in the literature to model fault
detection and reliability prediction systems considering both sensor and
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synthetic data for industrial equipment such as pumps, bearing, gearbox, air
compressors, gas turbines etc (Carvalho et al,, 2019; Riverol & Pilipovik, 2021).

Three cases of engineering problems are discussed in this paper, with
data-driven machine learning solutions proposed to these problems. The
first case refers to the labour-intensive nature of criticality analysis which
are used in asset management to prioritise assets (components or equip-
ment). A machine learning solution is proposed by the development of a
trained criticality analysis model which could be used for automation pur-
poses of this analysis. The second case looks at the application of machine
learning on predictive analytics by analysing failure patterns and parame-
ters for a machine. The third case describes a common challenge faced by
the end-users in selecting the right services from a wide range of services
for their asset operations. A development of a text classification machine
learning technique is proposed to solve this problem. The following sec-
tions provide the background and literature review to the fields of interest
in asset management and machine learning. The three case presentations,
problems and methodologies for the proposed solutions are presented fol-
lowed by results and discussion.

2. Background and literature review
2.1. Asset maintenance and management activities

The asset maintenance and management activities are described through a
landscape model which encompasses typical services provided by a phys-
ical asset maintenance firm. A combination of these services would result in
an optimised asset management solution that would satisfy the needs and
challenges of the asset operators to improve the asset system availability
and reduce the downtime of the assets, while following a systematic plan-
ning of operation and maintenance activities. The core services are defined
as follows:

e Digital Twin—The concept of digital twin was first proposed by NASA
in the aerospace industry in 1969, with the term ‘digital twin’ coined
by Michael Grieves in 2002. The technology has gained popularity over
the recent years in the energy sector for asset management and is
being mentioned as a promising technique in Industry 4.0. A digital
twin may be defined as a digital replica of a physical asset, complete
with different operating contexts, and may be simulated over numer-
ous scenarios to arrive at a decision on asset management. The data
from the physical asset are linked to the digital twin platform to con-
tinuously update the digital twin models to complement the physical
entities. The digital twin models may be a combination of statistically
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derived models and artificial intelligence techniques. The main advan-
tages of using a digital twin include improving the decision processes
for operation and maintenance of the assets, predicting the asset
behaviour and equipment failures over the life cycle of assets and sim-
ulating over any phase of the life cycle of the asset to determine the
total cost of ownership and to optimise the reliability, availability and
maintainability of the assets (Jiang et al, 2021; Macchi et al, 2018;
Stavropoulos & Mourtzis, 2022).

e Online Condition Monitoring—The remote and online monitoring of
the assets is achieved through the installation of smart sensors. The sig-
nals produced are processed, and the potential failures of the equip-
ment can be predicted well in advance to prevent unscheduled
downtime and repairs of the equipment. However, due to the costs of
installing condition monitoring equipment and monitoring, it should
only be considered if the information it provided would be beneficial
to overall uptime. The requirement for the online condition monitoring
tasks on critical assets may be determined by applying criticality ana-
lysis or reliability-centered maintenance principles which are described
in the following subsections. The parameters that could be utilised to
continuously monitor the health of the equipment are for example—
pressure, temperature, vibration, flow rates. The sensors used for collec-
tion of these parameters vary from piezoelectric pressure sensors, ther-
mocouples, thermistors for temperature to displacement probes,
accelerometers for vibration and so forth. The online condition moni-
toring data can be interconnected to other services such as digital twin
technology and predictive analytics (Basson, 2018; Stavropoulos &
Mourtzis, 2022).

e Predictive Analytics—Artificial intelligence techniques are used to train
and learn from the sensor data coming from the assets to understand
the equipment health. The model is trained, tested and validated from
huge amounts of historical data which reflects the normal and faulty
states of the equipment. The historical data is collected through the
sensor measurements of operating parameters such as temperature,
vibration, flowrates, pressure etc. The features from these data are
extracted and pattern recognition machine learning tools are used to
achieve a desired trained model. The trained model then predicts the
state of the equipment when new set of data is presented to it. The
equipment failures and faults are detected at the earliest to prevent
unwanted downtime and repair work. The model requires no level of
traditional programming and detects the hidden pattern within the
dataset (Liu et al., 2018; Pandya et al., 2018). The results from the pre-
dictive analytics module may be used for the determination of
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maintenance intervals for reliability-centered maintenance projects or
for optimisation of spares.

Reliability Engineering and Methods—Reliability is defined as the
probability that an asset, equipment or a component will not fail
over a specified time interval. The equipment failures over time may
be best represented by different probability distribution functions
and various statistical inference techniques such as maximum likeli-
hood estimation. Statistical methods are used to identify the best fit
probability distribution function from the historical failure data. This
probabilistic analysis forms the basis of a significant step in
Reliability, Availability and Maintainability (RAM) studies. Operational
availability may be defined as the fraction of total time that the
equipment is functioning, and the maintainability is defined as the
probability that a component or a piece of equipment is being
maintained over a specified time interval. The key performance met-
rics of RAM studies are mean time to failure and mean time to
repair which are derived from the probability distribution functions
of failure history and repair time of the equipment. A Reliability
Block Diagram (RBD) may be first modelled and simulated over the
life cycle to quantitively determine the system availability (Calixto,
2016). Reliability-Centered Maintenance (RCM) technique helps to
determine the maintenance strategies of the equipment by consider-
ing their functions, functional failures within their operating context,
followed by the selection of tasks (according to an algorithm) to pre-
vent or mitigate the consequences. A criticality analysis of each fail-
ure mode may also be performed, as a part of the RCM studies. The
reader is directed to authors’ previous papers on RCM for detailed
reference  (Nithin, Obisesan, et al, 2021; Nithin, Sriramula,
et al., 2021).

Inventory Management—It is often a challenge faced by the asset oper-
ators to optimise the spares holding to avoid unnecessary downtime or
excessive storage costs. Not having the right spares at the right time
leads to production unavailability whilst waiting on spares. Conversely,
unwanted stock holdings increase overhead costs such as storage costs,
administrative and preservation costs. To optimise spares holdings and
inventory management, a trade-off between the unavailability costs,
the overhead costs and type of spares need to be considered. To
achieve this cost optimisation, the annual demand of spares must be
determined from the reliability techniques such as probabilistic analysis
of historical failure data, RCM, RAM, Poisson process etc. The economic
order quantity can be evaluated from the annual demand of the spare,
and the ordering and holding cost of spares. The safety stock and
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reordering point are two parameters which have to be considered to
evaluate the spare movement and hence, to optimise the spares hold-
ing (Ferrari et al., 2006; Gulati & Smith, 2009; Smith, 2011).

e Computerised Maintenance Management System (CMMS)—The industry
uses these for work management and to store information about the
asset and business operations to improve the enterprise asset perform-
ance. Asset registers are built in the CMMS for a hierarchical represen-
tation of assets within the system, with information on failure history,
repair costs, production downtime, maintenance intervals, condition
monitoring measurements, criticality rankings and resources such as
labour, materials, and specialist tools. The maintenance tasks and plans
derived through reliability methods such as RCM are uploaded into the
CMMS, and these should be reviewed regularly for continual improve-
ment of the asset maintenance activities. The workorders for any main-
tenance tasks are stored and raised within CMMS and provides a
platform for workorder backlog management, routeing, and scheduling
of resources according to the maintenance tasks (Gulati & Smith, 2009;
Nithin, Obisesan, et al., 2021).

2.2. Machine learning techniques

Machine learning techniques are broadly classified into supervised learning,
unsupervised learning, and reinforcement learning. Supervised learning
encompasses datasets where inputs (explanatory variables) and outputs
(labels or responses) are available. In other words, the computer is trained
to learn from the input-output data pairs. The machine learning techniques
of regression and classification are used for supervised learning, an example
of this would be email spam classification, where a large dataset of emails
that are spam and not spam are used to train the computer. Unsupervised
learning techniques are applicable to unlabelled datasets, and the response
prediction is based on clustering or grouping variables of the same behav-
iour based on the features. An example of unsupervised learning would be
clustering or market segmentation to determine the most potential market
from a wide population based on their inherent interests. Reinforcement
learning refers to automatic learning from mistakes and uses feedback
loops to ultimately reduce the mistakes. An example of reinforcement
learning is a self-driving car (Gupta & Sehgal, 2021). The statistical tool of
linear regression forms the basis of the simplest machine learning tech-
nique. A linear approximation of the explanatory and dependent variables
is used in linear regression method and used for predictions and relations
between the variables (Gupta & Sehgal, 2021).
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Figure 1. Non-linear boundary of SVM classification technique.

The Support Vector Machine (SVM) classification technique is described
here, as a precursor for the following section on applications. SVM essen-
tially finds a hyper-plane between the data to determine a decision bound-
ary for classification. The support vectors are the points closest to the
decision hyper-plane. Therefore, the probability of classifying a datapoint
correctly increases with the distance of the support vector from the deci-
sion hyper-plane. The goal of the SVM is to minimise the cost function that
comprises of a training error cost and a penalty term. The training error
term refers to the minimal distance of each training example from the
hyperplane and the penalty term refers to a factor that accounts for error.
Mathematically, a SVM cost function for a labelled dataset of N pairs of x;
input and y; output is represented as (Forsyth, 2019):

S(a, b, \) = F ZN max (0,1 — y;(a"x; + b))} + k(aT—a>

N £—i=1 2
where a and b represent the parameters of hyperplane or decision bound-
ary separating the y; class labels. 4 is the regularisation parameter and
along with the penalty term # ensures that the loss due to learning is
minimised for new data which are not accounted for in the training dataset.
For non-linear datasets, SVM uses Kernel functions to classify the data by
transforming them to higher-dimensional space (Gupta & Sehgal, 2021).
Figure 1 shows a pictorial representation of SVM non-linear Kernel bound-
ary that classifies two groups of data, where data have been compiled from
an online database (Matzka, 2020a).
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Figure 2. Schematic representation of a neuron (adapted from (Lopez-Monroy &
Garcia-Salinas, 2022)).

Another area of machine learning of interest to this paper is the technique
of deep learning that is widely used for natural language processing. Deep
Learning is based on artificial neural networks, which are inspired by the func-
tionality of biological neural nets as found in the brain. The neuron is a linear
function of input values, a set of weights and a bias term. An activation func-
tion is then applied on the linear function of the neuron to give the output
predicted response and is termed as the feed-forward propagation, as pre-
sented in Figure 2.

Several types of activation functions such as sigmoid, Tanh and RelLU
(Rectified Linear Unit) activation functions are used in the literature. The
loss functions for each of the actual and predicted responses are evaluated
during the learning phase as a measure of performance, which basically
represents a percentage of error in prediction. The main objective of the
deep learning technique is to minimise the cost function of the summation
of the loss functions over the entire training dataset and the weights in the
initial layers are iteratively updated to meet this objective and is termed
backpropagation algorithm (Lépez-Monroy & Garcia-Salinas, 2022). For
most natural language processing, the sequence of the data points (words)
should be preserved. For this purpose, Recurrent Neural Networks (RNN)
are used to repeatedly process and update the hidden states by looking at
the input and the previous hidden states, thereby preserving the sequence
of the data. A popular model of RNN is the long short-term memory net-
work (LSTM). As the name suggests, LSTM has gates to update, forget the
previous memory or hidden states and store these in memory cells, there-
fore has the capability to find the long and short-term relations between
the sequences of the data points and to decide the information that it
intends to store or forget (Lopez-Monroy & Garcia-Salinas, 2022; Tsantekidis
et al.,, 2022). A schematic and simplified representation of a standard LSTM
architecture is presented in Figure 3.
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Figure 3. Simplified representation of LSTM architecture (adapted from (Lopez-
Monroy & Garcia-Salinas, 2022)).

Mathematically, a LSTM network could be represented as the sigmoid
and tanh activation functions of the elements of the network (Lopez-
Monroy & Garcia-Salinas, 2022):

ig = o(xU + h_ W)

fy = o(xU" + he W)

0g = o(x;U° + h;_W°)
C; = tanh(x;.U° + hy_1W°)
C=o0(f;0Cq+igeC)

h: = tanh(C;) e 04

where ig is the input gate, f; is the forget gate, o4 is the output gate, o rep-
resents the sigmoid function, U, Uf, U°, U° are the weight matrices that con-
nects the input to hidden layer; W, W W°, W* are weights that connects
the hidden-to-hidden layer; C; is the candidate hidden state which is an
activation function of input and the previous hidden state; C;_;, h;_; and
C;, h; are cell states and hidden states of the previous and current states,
respectively.

3. Applications of machine learning on asset
management services

3.1. Development of a novel trained machine learning model of
criticality matrix

Criticality analysis is a popular method in reliability engineering to prioritise
and rank the critical assets within a system (Basson, 2018). A criticality
matrix is developed with likelihood of failure occurrence and consequence
of failure on each axis, as shown in Figure 4. The likelihood or the probabil-
ity of failure occurrence is classified into five categories, ranging from
remote occurrence to frequent occurrence. The consequence of failure
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Figure 4. An example of criticality matrix with prioritisation bands.
ranges from minor failures to catastrophic failures, in terms of the impact
of failure.

However, the traditional method of criticality analysis is found to be very
time-consuming. A novel SVM application is proposed to develop a trained
model of the criticality matrix. For the applicability of SVM, the likelihood of
failure occurrence is derived from the mean time to failure of the various
assets. The consequence of failure only in terms of repair time is considered
in this paper. The minimum and maximum values of the mean time to fail-
ure and repair time are derived from the industrial reliability data handbook
OREDA (SINTEF & OREDA, 2009). Following this, the data points within the
minimum and maximum points were simulated and ranked under four cat-
egories of criticality such as minor, major, moderate and catastrophic. This
simulated data appended with real data, of 10,000 data points, were used
to train the SVM model. A sample of the training data is depicted in
Figure 5.

As seen in Figure 6, the trained criticality matrix model with a classifica-
tion error of 12.36%, was developed through SVM multi-label classification
which could be then used for classification and prioritisation of new assets,
while facilitating automation and minimising manual intervention. The clas-
sification error is obtained through the K-fold cross-validation technique
(Bangert, 2021). Here, the data is iterated ‘K’ times to split between training
and validation subsets, with the subsets varying for each iteration. The final
classification error of 12.36% is the average number of errors in classifica-
tions within ‘K’ iterations. A confusion matrix is illustrated in Figure 7 to
show the True Positive Rates (TPR) which denote the percentage of obser-
vations correctly classified for each class. False Negative Rates (FNR) are
also depicted in the figure to represent the observations classified
incorrectly.

The classification error could be further minimised by considering the
quadratic relationships between the variables or different machine learning
approaches. The comparisons between various approaches could be a sub-
ject of future work. With this trained model as shown in Figure 6, the man-
ual intervention for the classification of numerous assets could be
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Figure 5. Sample of training data for SYM model.
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Figure 6. SVM classification decision boundary regions for criticality matrix model.
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Figure 7. Confusion matrix illustrating the True Positive Rates (TPR) for SVM model.
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Table 1. Sample of training data for SVM asset health prediction.

Air Process

temperature temperature  Rotational speed Torque

[K] [K] [rpm] [Nm]  Tool wear [min] Failure type

300.8 309.4 1342 62.4 113 ‘Heat Dissipation
Failure’

298.1 308.6 1551 428 0 ‘No Failure’

298.2 308.7 1408 46.3 3 ‘No Failure’

298.1 308.5 1498 494 5 ‘No Failure’

298.4 308.2 1282 60.7 216 ‘Overstrain Failure’

298.3 308.1 1412 52.3 218 ‘Overstrain Failure’

298.9 309.1 2861 4.6 143 ‘Power Failure’

298.9 309 1410 65.7 191 ‘Power Failure’

297 308.3 1399 46.4 132 ‘Random Failures’

301 310.6 1493 37.8 206 ‘Tool Wear Failure’

minimised, which could instead be focussed on the negligible percentage
of data classified incorrectly. It should also be noted that there are other
parameters such as production loss, downtime, and redundancy used for
criticality analysis and those could be appended to this model as
future work.

3.2. Asset health prediction using machine learning techniques

The section explores predictive maintenance from sensor data obtained
from an online database (Matzka, 2020a). The sensor data consists of 10,000
data points with information regarding air temperature, process tempera-
ture, rotational speed, torque and tool wear, and five failure modes of tool
wear failure, heat dissipation failure, power failure, overstrain failure and
random failures (Matzka, 2020b). Although several models for predictive
maintenance are prevalent in literature, this example is presented for gen-
eral understanding of the process. The sensor data is analysed through
SVM to predict the health of the machine. A sample of training data is
given in Table 1.

The boundaries of SVM classification using Gaussian Kernel, with an error
loss of 0.0024 and K-fold loss classification error of 0.28%, derived as
explained in Section 3.1, are given in Figure 8. The dataset was also split
into 80% training dataset and 20% test dataset, which gave a higher test
accuracy of 99.3% than the training accuracy which suggests the trained
model does not overfit the data. The results align with the literature
(Matzka, 2020b), however, a different technique, explainable decision trees
was used to arrive at the same conclusion. Figure 8(a) shows a correlation
between the torque and rotational speed that may lead to power failure.
Figure 8(b) shows the correlation of tool wear and torque that may cause
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Figure 8. SVM boundaries for asset health prediction.

overstrain failure. The random failures due to tool wear are also evident in
Figure 8(c,d).

3.3. Development of a text classification machine learning model for
service selection

The natural language processing technique LSTM is applied to the develop-
ment of a service selector tool which could help the user to choose from
the variety of core services such as digital twin, online condition monitor-
ing, predictive analytics, reliability engineering and methods, inventory
management, data storage systems which are described in Section 2.1. The
tool has been developed in MATLAB version R2021b (The MathWorks & Inc,
R2021b). Figure 9 shows the main steps of the service selector (landscape)
tool which presents the generic steps of a machine learning task with the
novelty of the addition of a layer of word embedding that depicts the rela-
tionship between words in a text document. The first step comprised of the
data collection and compilation of various core services through expert
opinion on the main challenges of asset management and the class labels,
the data enhanced using word tuning techniques. The data, with 2278 rows
of textual data, is partitioned into training and validation data. Figure 10
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Figure 9. Generic steps of a LSTM natural language processing technique.
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Figure 10. Word cloud of training data for LSTM.

shows the word cloud of the training data with a word corpus of 2204
words related to asset management. The training and validation data is
then pre-processed to tokenise, stem, lemmatise the text and remove the
stop words (these are words that are very common and hold little value for
the model). A sample of the training data is given in Table 2.

The next step of word encoding translates the training and validation
data into vector or numerical format, recognised by the computer as the
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Table 2. Sample of training data for LSTM text classification.

Input text Class labels (output)
Rank or prioritise the critical systems or Criticality Analysis
equipment based on failures.
Predict health of equipment using sensor data Predictive Analytics
through machine learning techniques.
Develop maintenance strategies by studying Reliability-Centered Maintenance

function and function failure for systems
and components.

input as shown in Figure 11. For training the LSTM network, a number of
hidden layers, along with word embedding layer is used. The word embed-
ding layer maps the words that are similar to each other and places them
together in the vector space. The output layer of the LSTM model will be
the multi-class classification layer. The model was trained and evaluated
with an accuracy of 84%. The trained model is used for prediction of new
data for the service selector (landscape) tool as shown in Figure 12.

4, Results and discussion

Machine learning applications in the asset management sector have gained
popularity due to their capability to recognise hidden patterns in any data
set and have been used to the development of core services mentioned in
the paper. A brief introduction to the machine learning fundamentals and
two techniques of SVM and deep learning method of LSTM is given. Three
illustrative examples for engineering problems are presented which could
be used as a machine learning alternative to traditional methods of asset
management and maintenance activities. Firstly, the application of SVM
multi-label classification to the development of a criticality matrix trained
model is provided which would let the end user to rank or prioritise a new
set of data by presenting to the trained model. Secondly, an example for
asset health prediction using SVM binary classification is provided to study
the health of the equipment.

While the first two classification cases are trained on tabular numerical
data, the third problem of the service selector tool is trained on textual
data. The service selector (landscape) model that brings together the main
core services related to asset management would help the asset operators
with improved decision-making. Services such as digital twin technology,
predictive analytics, online condition monitoring, reliability engineering
techniques and methods, inventory optimisation, data cleansing and asset
register build and storage through CMMS system are discussed briefly.
LSTM is used as a text classification predictor of the service selector (land-
scape) model that lets the end user to choose from a variety of services
based on their challenges and pain points related to asset management.
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Figure 12. Service selector (landscape) tool for option selection, developed
in MATLAB.

The authors initially used the SVM technique for the natural language
processing case study. However, this technique gave a lower accuracy and
overfitted the data. It was evident that another layer of word embedding
was required to understand the relationship between the words and deep
learning was required to process the textual data and subsequently, LSTM
was chosen. Data collection and word tuning used for the broader topic of
asset management terminologies and definitions proved to be the most
challenging aspect for the development of the model. The accuracy of the
model could be further enhanced by continued development of the textual



SAFETY AND RELIABILITY 167

input data and could also be verified using other deep learning techniques
which could be a subject of future work.

5. Conclusions

This paper looked at three engineering problems related to asset manage-
ment and maintenance priorities. Data-driven machine learning solutions
were proposed that would automate the work processes. A multi-label SVM
classification machine learning model for criticality matrix, with a classifica-
tion error of 12.36%, is proposed as an alternative to the traditional method
of criticality analysis. For criticality model, there are other parameters such
as production loss, downtime, and redundancy used for criticality analysis
and those could be appended to the trained model as future work. The bin-
ary SVM classification model for asset health prediction to predict the
equipment failure has been modelled with an error loss of 0.0024. The
models could be extended by comparing with other machine learning tech-
niques other than SVM. The text classification LSTM machine learning
model for the service selector tool was trained with an accuracy of 84%.
The complimentary services along with main services could be integrated
within the model as a future recommendation.
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